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Abstract—Unlike Quality by Testing approach, where

products were tested only after drug manufacturing, Qual-

ity by Design (QbD) is a proactive control quality paradigm,

which handles risks from the early development steps. In

QbD, regression models built from experimental data are

used to predict a risk mapping called Design Space in which

the developers can identify values of critical input factors

leading to acceptable probabilities to meet the efficacy and

safety specifications for the expected product. These em-

pirical models are often limited to quantitative responses.

Moreover, in practice the smallness and incompleteness

of datasets degrade the quality of predictions. In this

study, a Bayesian approach including variable selection,

parameter estimation and model quality assessment is

proposed and assessed using a real case study devoted to

the development of a Cationic Nano-Lipid Structures for
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siRNA Transfection. Two original model structures are also

included to describe both binary and percentage response

variables. The results confirm the practical relevance and

applicability of the Bayesian implementation of the QbD

analysis.

Index Terms—Statistics, Bayes, Quality by Design,

Nanomedicine, siRNA.

I. INTRODUCTION

Due to their complex structure, the development of

non-biological complex drugs must comply with the set

of ICH1 Q8-Q11 guidelines to better control quality

and safety as early as first steps of development. One

holistic approach to today’s current challenges within

the nano-pharmaceutical industry is to focus on the

Pharmaceutical Quality by Design (QbD), which begins

with predefined objectives and emphasizes product and

process understanding, based on data-driven modeling

and quality risk assessment [1], [2].

Since 2017, QbD has become more and more pop-

ular in the nanomedicine community to better control

quality and safety during the synthesis and production

phases [3], [2]. Nevertheless, some important deficien-

cies and inadequacies have also been identified in these
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QbD implementations [4]. One of them concerns the

computation of the Design Space, a multidimensional di-

agram of probabilities, which measures the likelihood of

satisfying quantitative requirements on output variables.

These probabilities are estimated from mathematical

models describing the relationships between the input-

output variables. When mechanistic models are not avail-

able, we use empirical models. To identify them, exper-

imental datasets must be compiled and the most popular

technique is to apply design of experiments (DoE). This

statistical approach to the preparation of the experimental

setup makes it possible to reduce the number of trials to

obtain an acceptable accuracy on the model predictions.

Nevertheless, in biology, it often happens that certain

experiments fail and, unfortunately, the conditioning of

the estimation problem is very sensitive to the loss

of experience within the learning dataset. The direct

consequence is an imprecise model and the final result

is either an underestimation or an overestimation of the

risks not to comply with the quality/safety requirements.

Since the QbD approach relies on successive in-

vestigation cycles, the knowledge from the previous

round can be partially reused in the current stage

through a Bayesian modeling approach. This explains

why these methods have often been used in QbD stud-

ies [5][6][7][8]. Nevertheless, several hurdles still need

to be crossed over to improve their applicability to QbD

studies. Two specific issues are addressed in this study:

the analysis of qualitative responses and missing data.

To illustrate the applicability of the proposed solution,

we present a study case based on the development of

lipid nanoparticles for siRNA transfection in which the

two examined critical quality attributes are their stability

and the transfection efficiency. The initial experimental

setup was based on a mixture design of experiments

and was composed of 36 different trials. Unfortunately,

some of those experimental conditions led to unstable

nanoparticles, which finally cut in half the number of

nanoparticles to be used during the transfection effi-

ciency tests. In that situation, the Bayesian regression

paradigm can be used to handle the ill-conditioning of

the estimation problem by introducing prior knowledge.

The methodological contribution covers both the variable

selection, parameter estimation and model validation.

Moreover, to address the issues related to the qualitative

response modeling and to account for the constraints on

the possible values taken by a percentage response, a

Bayesian estimation procedure is applied to a logistic

model.

II. MATERIAL AND METHODS

A. Quality-by-Design compounds

Quality by design (QbD) is an holistic, proactive and

integrative approach to drug development that begins

with predefined objectives and emphasizes product and

process understanding, based on sound science and qual-

ity risk management [9]. The overarching goal of QbD

is to improve biological therapeutics safety and efficacy,

while additional benefits include the reduction of cost

and the potential for faster regulatory approval of new

drugs. This approach can be broken down into two main

parts. The first is rather statistical and aims to assess risks

and identify the normal operating region. The second is

technological and consists of integrating sensors, probes,

control units and database management systems to better

control the manufacturing process and achieve quality

goals in a sustainable way. The statistical part of the QbD

approach is composed of four main steps as presented in

Figure1: (i) the product profiling, (ii) the experimental

phase, (iii) the data analysis and (iv) the knowledge

extraction.

1) Quality Target Product Profile: The first step of

QbD is to define the Quality Target Product Profile

(QTPP) of the ideal drug product we wish to develop.
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Fig. 1. Quality-by-Design cycle of drug development decomposed into four steps. The procedure is re-executed at each critical development

question.

This includes information like the intended use, dosage

form & appearance, route of administration, stability,

physical attributes, purity, sterility and water content,

but it can also include business information about the

targeted market, as emphasized in [10]. Its content

must be regularly updated throughout the development

process. As nothing new is discussed on this point herein

it is not detailed in this article.

2) CQA Definition and specification: The experimen-

tation phase of the QbD cycle starts by defining the

output and input variables. A critical quality attribute

(CQA) is a physical, chemical or biological property

or any other characteristics, which that must be kept

within an appropriate range to ensure the desired product

quality defined in the QTTP. CQA can be regarded as

output variables associated with efficacy/safety or qual-

ity objectives. Critical manufacturing attributes (CMA)

belong to the first category of input factors able to

cause variability of CQA. They are associated with

the formulation parameters of the nanoproduct. Critical

process parameters (CPP) are the second category of

input variables. They are related to the manufacturing pa-

rameters. The experimentation phase also includes (i) the

design of experiments to stimulate in a minimum of tests

CPP and CMA and (ii) the collection of measurements

on the CQA during the experiments. The experimental

data thus collected will allow the next step to better

understand the cause-effect relationship between those

variables to finally predict the risks of not complying

the efficacy/safety/quality specifications.

3) Data-driven modeling: The mathematical relation-

ship between quality outcomes (CQA) and input factors

(CMA and CPP) is experimentally determined in a third

step using specific data-driven modeling methods. In

practice, response surface equations, a class of polyno-

mial models, are often used to describe the links between

input and output variables. This type of model enables

in QbD to compute a Design Space: a risk mapping tool

used to identify the operating region of quality.
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4) Knowledge extraction and risk prediction: The

Design Space is a graphical representation used to deter-

mine the CPP values allowing the quality requirements

to be met with a controlled probability. The graph can

be divided into four regions of probability:

• the Out Of Specification (OOS) region, in which the

probabilities of meeting the technical requirements

on CQA are too small. In such a situation, deeper

investigations are required to understand the reasons

for unacceptance;

• the Proven Acceptance Region (PAR) , in which the

probabilities of meeting the technical requirements

are acceptable but some adjustments should be

made to access the NOR;

• the Normal Operating Region (NOR) corresponds

to the desired region where CQA have a high de-

gree of probability of complying with their quality

specifications;

• the Control Operating Region (COR) is a subspace

of NOR in which an automated control system has

to maintain the operating point.

In this study, we focus on the last three stages of the

cycle. Since the 19th century, the scientific investigation

has been essentially inspired by an approach integrating

deductive and inductive methods, in which the today’s

prior is updated by new data to become a posterior

knowledge that will serve as tomorrow’s prior, and so

forth. The Bayesian inference [11] engine as well as the

Quality by Design paradigm work namely the same way,

as illustrated in Figure 1. This is one of the reasons that

motivated us to integrate the two approaches.

B. Physico-chemical characterization & Biological as-

says

All aspects of the material characterization, cell

culture conditions, stability testing, cytotoxicity as-

says, inhibition studies, internalisation estimation, co-

localization quantification and transfection efficacy are

detailed in appendices of this document.

C. Definition of critical quality and material attributes

1) CQA Definition: Two quality attributes were iden-

tified as critical in this study.

• Ys is a critical safety attribute related to the LNP

stability. This output variable takes only two val-

ues: {0; 1} to describe unstable and stable states

respectively.

• Ye is a critical efficacy attribute related to the siRNA

transfection rate. Specification on Ye: a minimun

of 30% of efficacy is expected. The transfection

efficiency is in fact a downregulation efficiency

based on the monitoring of the extinction of GFP

expression.

2) CMA Definition: Four material attributes were

tested to identify their potential effects on the two CQA

previously defined:

• X1 is the DOTAP proportion (%) in the LNP

content;

• X2 is the concentration of PEG surfactant (%);

• X3 is the Lecithin proportion (%);

• X4 is the LNP size (small, medium, large).

D. Statistical Analysis

1) Design of Experiments: A D-optimal mixture de-

sign was implemented to select 36 formulations to be

synthesized and tested in in vitro assays. This design

was computed with the Design Expert Software. The

composition of those 36 LNPs is presented in Table I. 13

LNPs did not comply with polydispersity specifications

and were eliminated at the beginning of the study. As a

consequence, only 23 LNPs were used in the stability

analysis. Finally, having removed the unstable LNPs,

there remained only 15 candidates to test the transfection
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efficiency. Because of those missing data, the estimation

of the response surface model parameters becomes ill-

conditioned. A Bayesian estimation strategy can be a

solution to overcome that issue and regularize the esti-

mation problem. In the best case, prior data collected

during pilot experiments can be used to estimate the

prior distributions of some parameters. Otherwise, a

weakly informative default prior is designed to provide

moderate regularization and to improve the computation

stabilization. That option was used in this study.

2) Bayesian Estimation Method: The bayesian infer-

ence techniques are more and more used in Pharmacol-

ogy [12] and now recommended by FDA in numerous

studies such as medical device clinical trials [13], clinical

trials to evaluate the safety of human drugs or biological

products [14] as well as biomarker qualification [15].

Data-driven Bayesian modeling methods are particularly

relevant when biological datasets are small as is often the

case with the use of statistical methods to design exper-

iments. In this context, the classical tests and regression

techniques based on the frequentist paradigm are often

biased and too optimistic. In QbD studies, a large ma-

jority of design spaces, computed and presented in most

of the scientific publications, rely on average responses

and do not account for the prediction uncertainty [16],

[17], [18], [19], [20], [21], [22], [23], [24], [25], [26],

[27]. The Bayesian estimation methods bring a natural

framework to efficiently handle this problem [28], [29].

The idea behind the Bayesian framework is quite

simple. From observed data y = (y1, ..., yn), n re-

alizations of a variable Y whose distribution depends

on both a parameter vector θ and explanatory variables

X = (x1, ..., xd), we try to estimate θ considering it as

a random variable. The probability distribution of θ is

unknown and has to be determined. To that aim, we first

need to specify a prior distribution based on previous

knowledge about the parameter and then update this

x1 x2 x3 x4 Ys Ye

Run DOTAP PEG Lecithine Size target PDI Stable Transfection

PC3-GFP

1 0.2 0.2 0.4 3 0.223 NA

2 0.53 0.21 0.06 2 0.377 NA

3 0.52 0.22 0.06 1 0.16 70.94

4 0.46 0.48 0.06 1 0.366 NA

5 0.54 0.21 0.06 3 0.315 NA

6 0.41 0.29 0.26 3 0.172 no

7 0.2 0.2 0.4 2 0.184 no

8 0.21 0.53 0.06 3 0.187 18.15

9 0.21 0.53 0.06 2 0.161 12.1

10 0.27 0.23 0.5 3 0.162 no

11 0.47 0.47 0.06 2 0.147 28.72

12 0.2 0.65 0.15 2 0.175 20.75

13 0.47 0.47 0.06 3 0.222 NA

14 0.2 0.45 0.35 2 0.15 13.52

15 0.7 0.2 0.1 2 0.163 no

16 0.47 0.47 0.06 2 0.148 44.35

17 0.21 0.53 0.06 2 0.181 19.7

18 0.2 0.65 0.15 1 0.258 NA

19 0.7 0.2 0.1 3 0.304 NA

20 0.27 0.23 0.5 2 0.135 no

21 0.27 0.23 0.5 1 0.381 NA

22 0.2 0.2 0.4 1 0.249 NA

23 0.48 0.2 0.29 1 0.274 NA

24 0.21 0.53 0.06 1 0.458 NA

25 0.7 0.2 0.1 2 0.167 no

26 0.2 0.43 0.32 1 0.327 NA

27 0.47 0.2 0.29 2 0.155 no

28 0.53 0.21 0.06 2 0.234 NA

29 0.2 0.65 0.15 3 0.198 5.77

30 0.27 0.23 0.5 2 0.129 no

31 0.7 0.2 0.1 1 0.192 31.27

32 0.54 0.29 0.17 1 0.187 45.73

33 0.54 0.29 0.07 1 0.192 68.11

34 0.27 0.65 0.08 2 0.184 7.19

35 0.4 0.48 0.12 2 0.154 17.09

36 0.4 0.48 0.07 2 0.19 28.79

TABLE I

LIST OF THE 36 EXPERIMENTAL CONDITIONS BASED ON A

D-OPTIMAL MIXTURE DESIGN. MODALITIES 1, 2, 3 OF x4 STAND

FOR SMALL: (1), MEDIUM: (2) AND LARGE: (3) TARGETED

DIAMETERS. NA INDICATES THAT STABILITY WAS NOT TESTED

SINCE THE PDI CONDITION WAS NOT MET. PDI VALUES IN BOLD

INDICATE THOSE MEETING THE DESIRED SPECIFICATION

(PDI<0.2)

information by using the new data we have in possession

owing to the following Bayes formula:

p(θ | y, x) ∝ p(y | θ, x) · p(θ) (1)

where p(θ | y, x) denotes the posterior distribution of

θ given observed data y and the values x of the input

factors X , which have been previously fixed by a design

of experiments. p(y | θ, x) and p(θ) are the likelihood

function and prior distribution on θ respectively. The
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posterior distribution contains updated information about

the parameter after observing the data y [11].

In most cases, we cannot obtain the exact and explicit

form of the posterior distribution and the best we can do

is to get a sample from it by using numerical methods

such as MCMC algorithms [30] or the ABC method

[31]. Once the posterior distribution p(θ|y, x) estimated,

we have to calculate the posterior predictive distribution

in order to build the design space. This distribution

allows us to digitally replicate data ỹ from the posterior

distribution of the parameters. It is possible to compute

ỹ either from the original values x or from new values

x̃ of X . Both distributions p(.|y, x) and p(.|y, x, x̃) are

defined respectively by the two following equations:

p(ỹ|y, x) =

∫

Θ

p(ỹ|θ, x)p(θ|y, x)dθ, (2)

p(ỹ|y, x, x̃) =

∫

Θ

p(ỹ|θ, x̃)p(θ|y, x)dθ. (3)

Let Ỹ |y,x,x̃ be the variable whose distribution is the

posterior predictive distribution defined in (3). Thanks

to this variable, the normal operating region within the

design space is then defined as follows:

NOR =
{

x̃ ; P(Ỹ |y,x,x̃ ∈ Λ ) ≥ ρ
}

=

{

x̃ ;

∫

Λ

p(ỹ|y, x, x̃)dỹ ≥ ρ

}

(4)

where P(·) is a probability function, x̃ is a vector

of values taken by the critical material attributes and/or

critical process parameters. {x̃} denotes the predicted

NOR subspace, i.e. a subset of CMA/CPP values for

which we have a probability greater than ρ to meet the

expected specifications Λ on the predicted CQA: Ỹ . The

other regions: PAR and OOS are defined by the same

equation but with different values of ρ.

The identification of the design space requires to

determine the cause-effect relationship between Y and

X . In practice, this relationship is often described by

a response surface model identified from experimental

datasets (y and x) collected after the application of

a specific design of experiments [32], [33]. Unknown

parameters of the response surface model are gathered

in the vector θ. The structure of the response surface

model is defined in sections II-D3 and II-D5 for the two

CQA. In this study, a Bayesian approach is proposed to

address several key issues before computing the design

space.

a) Variable Selection. The first step is to choose

the model structure that best fits the data. This

step includes the selection of the most informative

critical material attributes. The Bayes Factor is used

to that aim [34].

b) Parameter Estimation. The second step is devoted

to the model parameter estimation from experimen-

tal data.

c) Model Evaluation. Before using this empirical

model to compute the design space, its ability

to fit and predict the two CQA behaviors in the

experimental domain has to be tested. The posterior

predictive checking and the leave-one-out cross-

validation techniques are employed for this purpose.

d) Design Space Determination. The NOR, PAR

and OOS regions of the design space are then

determined by calculating with equation (3) which

proportions of the predicted CQA values meet the

quality requirements.

3) Response surface modeling of the LNP stability:

the first CQA examined in this study is noted Ys and

deals with the LNP stability. Since this CQA is binary,

a logistic regression model was used herein. This tech-

nique is a generalization of the linear regression model

where Ys is described by a Bernoulli variable:

Ys,i = Ber(πs,i), i = 1, ..., 36 (5)
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where i denotes the i-th experimental condition of the

design and πs,i is the parameter to be estimated, which

should always be contained in the interval [0, 1]. To

account for this constraint, we apply a transformation

using the logit (noted g) function defined as follows:

g : [0, 1] → R (6)

π 7→ log(
π

1− π
) (7)

and thus :

g−1 : R → [0, 1]

z 7→
ez

1 + ez
. (8)

The model used for the LNP stability is described by the

following equation:

πs,i = g−1(xi•b) =
eb0+

∑
4

j=1
bjxi,j

1 + eb0+
∑

4

j=1
bjxi,j

. (9)

where xi• is the i-th row of the DoE matrix x, defined

in Table I, and xi,j denotes the (i, j) entry of x. j =

{1, 2, 3, 4} is the CMA index.

4) Prior Modeling for the Stability Model: as we

had no accurate prior knowledge on each parameter,

a weakly informative default prior was chosen. These

priors are designed to provide moderate regularization

and to improve the computation stabilization. The way

rstanarm attempts to make priors weakly informative

by default is to internally adjust the scales of the

priors, considering the data. First, all prior are set to

a specific value. For the logistic regression, Gelman

and al. (2008) recommend to use a Cauchy distribution

with center 0 and scale 2.5, and a scale of 10 for

the intercept [35]. Then, by considering the data we

have, the priors on parameters were adjusted as follows:

the β0 scale is multiplied by sd(y) : the empirical

standard deviation computed on the measured values of

the response variable Ys. The scales of the other model

parameters are divided by sd(xj), where sd(xj) denotes

the standard deviation computed on values of the input

factor xj associated with the corresponding parameter

βj . In addition, we assumed prior independence of the

coefficients.

5) Response Surface Modeling of the Transfection Ef-

ficiency: the random variable Ye denotes the percentage

of siRNA transfection. This efficiency attribute is also

described by a logistic model:

log

(

Ye,i

1− Ye,i

)

= b0 +

4
∑

j=1

bjxi,j + Ei (10)

where Ei
iid
∼ N (0, s2).

6) Prior Modeling for the Transfection Model: prior

modeling for the transfection model is quite the same

as for the stability model in section II-D4, we also

use weakly informative priors. Cauchy distribution with

center 0 and scale 2.5 is allocated for the β parameters,

except for the intercept, which follows a Cauchy distri-

bution with center 0 and scale 10. Then, the prior scales

have to be adjusted considering the data, in the same

way as it was explained for the stability model.

7) Variable selection with the Bayes Factor: at the

origin, the Bayes Factor (BF) is a criterion used to

compare the plausibility of two models but its princi-

ple was adapted to the variable selection in regression

applications [36]. For each regressor, a test is applied

by comparing the complete model, composed of all

the explanatory variables, with the one without the j-

th regressor. More precisely, the BF criterion for the j-

th regression variable xj is defined as the ratio of two

marginal posterior likelihoods associated with the two

competing models :

BFj =
L(y|M)

L(y|M−j)
(11)

where L(y|M) =
∫

l(y|M, θ)p(θ|M)dθ is the likeli-

hood function of the observed data y, given the model

M whose parameters follow the posterior distribu-

tion: p(θ|M). This also applies to M−j and θ−j for
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L(y|M−j). A higher value of BFj means a higher level

of the explanatory power for xj .

8) Model evaluation with the PPC: the posterior

predictive check (PPC) is a Bayesian technique to assess

the appropriateness of the model to fit the data [37].

Its principle is to build up replicate datasets yrep to be

compared with real data through histograms or dedicated

statistics of information. In this study, PPC was imple-

mented with 4000 replicates.

a) Stability Response: however, PPC is not suited

to characterize binary responses. Instead of using his-

tograms, we propose an original diagram composed of

10 black and white bars. Each bar is decomposed into

25 segments corresponding each to the stability response

after each assay. The first bar is the reference composed

of the measured responses to be compared with the

remaining bars associated with the simulation replicates.

To illustrate the results coming from the 4000 replicates,

we also built an average confusion matrix to estimate the

mean sensitivity and specificity criteria.

b) Efficiency Response: for quantitative responses

such as the percentage of efficiency, a quantity entitled

ppp-value may be associated with the PPC test. The ppp-

value corresponds to the probability for the replicate data

to be greater than the observations. A targeted value for

ppp-value is to be equal to 0.5.

9) Model evaluation with the LOO-CV: the Leave-

One-Out Cross-Validation (LOO-CV) method aims at

assessing the ability of the model to provide accurate

predictions [38]. Its principle consists in dividing the

observed dataset into n samples where n is the number

of data points. Each sample is a train set in which the i-th

observation is missing. It is used to fit the model and to

test its ability to predict the remaining observation. The

predictive feature of a model has to be checked before

using it to build a relevant Design Space. A statistics,

noted pLOO thereafter, is used to compute the estimated

effective number of parameters. If the model is well

specified, pLOO is expected to be smaller than or similar

to the total number of parameters in the model.

III. RESULTS

A. Estimation results for the stability model

TABLE II

BF VALUES FOR THE STABILITY RESPONSE (SAVAGE-DICKEY

DENSITY RATIO)

Variable BF

X1 0.7

X2 3.88

X3 1.39

X4 23.94

1) Model Selection: values of the BF statistics given

in Table II show that X4 (LNP size) is the most critical

material attribute on stability, far ahead of X2 (PEG

proportion). Only those two variables have been kept

to explain the stability response thereafter.

2) Parameter Estimation: after the variable selection,

the reduced model structure is given by :

πs,i = g−1(xib) =
eb0+b2x2,i+b4x4,i

1 + eb0+b2x2,i+b4x4,i
. (12)

The estimated values of the model parameters, provided

by the MCMC technique, are given in Table III. Figure 2

shows the posterior distributions associated with the

three parameters of the stability logistic model defined in

(12). Signs of the two coefficients show that the proba-

bility of stability is increasing with x2 (PEG proportion)

but decreasing with the rising of x4 (LNP size). This

model is used thereafter to predict the LNP stability for

other pairs of values for X2 and X4.

3) Model evaluation: the posterior predictive check

was applied to (12) to assess its appropriateness to fit the

data. Its principle is to compare histograms of replicated

data (yrep) with the one of the measured data. However,
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TABLE III

ESTIMATED VALUES, STANDARD DEVIATIONS, AND MAIN

QUANTILES FOR THE LOGISTIC MODEL PARAMETERS

Parameter Mean SD 10% 50% 90%

b0 4.1 8.9 -4 3 13.2

b2 57.0 49.2 19.1 42.0 107.8

b4 -177.9 155.0 -335.0 -132.6 -59.6

Fig. 2. Posterior distribution of the three parameters that compose the

stability logistic model

this description is not suited to our binary response. In

Figure 3, we propose an original diagram composed of

black and white bars, the first one represents observed

data and others correspond to predictions (here we show

only 10 bars on the 4000 replications that have been

performed). Each bar is decomposed into 25 segments

corresponding to the stability values of the 25 assays.

The first bar on the left contains the measured responses

of stability to be compared with the ten remaining bars

associated with ten simulations of the model (12). We

observe a large similarity between the ten predictions

and the observed stability. Table IV shows the mean

confusion matrix of the stability predictions compared

with the observations with a mean sensitivity: Se = 0.97

and a mean specificity: Sp = 0.95, which corroborates

the ability of the stability model to fit the observed data.

Another global measure can be done : the percentage

of correctness. In our case, we have 96.3% of correct

answers over the 4000 replications.

Fig. 3. Comparison of posterior predictions with the observations on

stability. The first column on the left shows a vertical bar decomposed

into 25 black/white segments associated with the stability values: black

(stable) and white (unstable). The 10 bars on the right correspond to

ten replications of posterior predictions.

TABLE IV

MEAN CONFUSION MATRIX ESTABLISHED OVER 4000 REPLICATES

OF SIMULATION

Observations

Predictions Stable Unstable

Stable 14.55 0.38

Unstable 0.45 7.62

4) Design Space: once the stability model qualified,

the subsequent design space is given by:

NORS = {(x̃2, x̃4) ; P(Ỹs is stable | x̃2, x̃4) ≥ 0.9}

(13)

PARS = {(x̃2, x̃4) ; 0.7 ≤ P(Ỹs is stable | x̃2, x̃4) < 0.9}

(14)

OOSS = {(x̃2, x̃4) ; P(Ỹs is stable | x̃2, x̃4) < 0.7}

(15)

The three associated regions of the design space can

easily be represented in the plan (x2;x4) in Figure 4.
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Fig. 4. Design Space of the LNP Stability. Region NOR in green has

a stability probability greater than 90%. Region PAR (orange) has a

stability probability between 70% and 90% while the last region: OOS

in red has less then 70% to get LNP stability

B. Estimation Results for the siRNA Transfection Model

TABLE V

BF VALUES FOR THE EFFICIENCY RESPONSE (SAVAGE-DICKEY

DENSITY RATIO)

Variable BF

X1 0.112

X2 1.141

X3 0.101

X4 0.08

1) Model Selection: values of BF in Table V show

that X2 (PEG concentration) is the most critical factor

impacting on the transfection efficiency. At the opposite,

the LNP size (X4) is the least influential factor. The

two other factors: X1 and X3 (DOTAP and Lecithin

proportions) do not appear as active factors but are kept

for the estimation step.

2) Parameter Estimation: after the variable selec-

tion, the reduced structure of the transfection efficiency

model (10) is composed of four parameters: β =

(β0, β1, β2, β3)
′ corresponding to the intercept coeffi-

cient and additive effects for X1, X2 and X3 respectively

on the transfection efficacy. The estimated values of the

model parameters, provided by the MCMC technique,

are given in Table VI. Figure 5 shows the posterior

distributions of the logistic model parameters. Sign of β2

indicates that the probability of efficiency is increasing

when both X2 (PEG proportion) is falling. The same

remark can be made on X3 (Lecithin proportion) on

a smaller scale. On the other hand, the distribution of

X1 is centered on zero, synonym of a negligible effect

compared to the two previous factors. Therefore, only

X2 and X3 will be used to compute the transfection

efficiency design space.

TABLE VI

ESTIMATED VALUES, STANDARD DEVIATIONS, AND MAIN

QUANTILES FOR THE LOGISTIC MODEL PARAMETERS.

Parameter Mean SD 10% 50% 90%

b0 1.7 2.1 -1.0 1.7 4.2

b1 0.2 2.3 -2.7 0.2 3.2

b2 -5.4 2.5 -8.6 -5.5 -2.2

b3 -3.2 2.8 -6.6 -3.2 0.3

Fig. 5. Posterior distribution of the three parameters involved in the

transfection efficiency logistic model

3) Model evaluation: the posterior predictive check

was applied to the transfection model to assess its

appropriateness to fit the data. Figure 6 presents four

different ways to describe the dispersion of simulations

(light blue) compared with the measurement (dark blue).

In each plot, we observe a large similarity between the
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predictions and the observed transfection efficiency. The

ppp-value associated to the means (4th illustration) is

equal to 0.505, very close to the targeted value: 0.5,

which emphasizes the ability of the model to fit mean

responses of the transfection efficiency. Nevertheless,

PPC can be sometimes too optimistic and has to be cor-

roborated by the Leave-One-Out Cross-Validation test.

The pLOO value associated with the LOO test is equal

to 4.9 (SE=2.0), close to the number of model parame-

ters. Results of the Leave-One-Out Cross-Validation are

shown in Figure 7. Only one out of 15 observations is not

included in the posterior predictive distributions, which

shows an acceptable accuracy of the model to describe

the transfection efficiency response of the tested LNP.

4) Design Space: once the stability model qualified,

the subsequent design space is given by:

NORE = {(x̃2, x̃3) ; P(Ỹe ≥ 30% | x̃2, x̃3) ≥ 0.9}

(16)

PARE = {(x̃2, x̃3) ; 0.7 ≤ P(Ỹe ≥ 30% | x̃2, x̃3) < 0.9}

(17)

OOSE = {(x̃2, x̃3) ; P(Ỹe ≥ 30% | x̃2, x̃3) < 0.7}

(18)

The three associated regions of the design space can

easily be represented in the (x2;x3) plan in Figure 8.

C. Final compromise

As emphasized by the two individual design spaces

related to LNP stability and siRNA transfection effi-

ciency, described in Figures 4 and 8 respectively, the

second critical factor x2 (PEG proportion) is involved

in both design spaces and a compromise has to be

determined. To that aim, we assume that the two CQA

are independent from each other and the subsequent joint

probability becomes:

P(Ỹs is stable& Ỹe is efficient) (19)

= P(Ỹs is stable)× P(Ỹe is efficient)

(20)

This formula allows us to estimate the global design

spaces for x2, x3 and x4 presented in Figure 9 in

which the green area is the normal operating region. It

shows there exists a very small NOR region in which

combinations of values for the three critical factors

could meet specifications on transfection efficiency and

stability attributes.

IV. DISCUSSION

Results of this study firstly emphasizes the practical

relevance of a full Bayesian approach to implement the

Quality-by-Design good practices in situations where

only small experimental datasets are available. Such

a situation is common and often dictated by limited

budget and resources during the development phase,

which generally leads developers to implement statistical

strategies for the design of their experiments in order to

minimize the number of tests. In this case, the Bayesian

paradigm allowed us to account for prior knowledge

gained through previous pilot assays. Over the last

decade or so, a lot of contributions have made available

computational tools in free software environments for

statistical computing, such as the programming environ-

ments R and Python, to facilitate the implementation

of Bayesian estimation methods. Results presented in

this study also point out how the Bayesian framework

is able to address risk assessment in a more extended

scope and not only for parameter estimation as usually

observed. The proposed Bayesian method for design

space identification relies on five steps: design of exper-

iments, variable selection, parameter estimation, model

evaluation and design-space computation. Such a generic
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(a) Observed vs replicated transfection distributions (b) Observed vs replicated data histogram

(c) Observed vs replicated data boxplots (d) Observed vs replicated average values of the

transfection predictions

Fig. 6. Posterior predictive check of the transfection efficiency predictions. y = log
(

Ye,i

1−Ye,i

)

and yrep denotes predicted values of y.

Fig. 7. Results of the Leave-One-Out Cross-Validation test. Obser-

vations are described by dark blue dots while posterior predictive

distributions are plot in light blue.

Fig. 8. Design Space of the siRNA transfection efficiency. Region

NOR in green has a stability probability greater than 90%. Region

PAR (orange) has a stability probability between 70% and 90% while

the last region: OOS in red has less than 70% to get LNP stability.

This design space was obtained with x1 = 0.683.
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Fig. 9. Global Design Space integrating efficacy and stability specifi-

cations obtained for x1 = 0.683. Region NOR in green has a stability

probability greater than 90%. Region PAR (orange) has a stability

probability between 70% and 90%, while the last region (OOS) in

red has less than 70% to achieve LNP stability

methodology can be implemented in a large spectrum

of applications even when response variables are not

quantitative and when experimental data are missing, as

emphasized in this study case.

Indeed, there are many categorical responses mea-

sured during physico-chemical characterization analysis

such as functionality of surface chemistry, unchanged

chemical identity, physical aggregation or resistance to

sterilization process, etc. Therefore, it is quite important

to get efficient method able to deal with this type of

CQA.

The lack of data availability is also another generic

issue caused by the elimination of experimental condi-

tions leading to unstable or aggregated states that finally

cannot be used to measure the other CQA. In this case,

the statistical properties associated with the design of

experiments are lost and can drastically increase the

estimation uncertainty and therefore prevent us to draw

any relevant conclusion.

Even when prior data coming from pilot studies are

not available, we show that a weak information prior

can in part compensate consequences of lost assays and

provide relevant estimation results in practice. It has to

be noted this estimation technique can be extrapolated

to multi-value categorical response variables.

This Bayesian approach of QbD is currently being

used in different projects involving molecules, nanoparti-

cles and also medical devices, in two European projects:

TBMED2 and EXPERT3. In addition to the results

highlighting the relevance of this approach, its imple-

mentation under the R statistical computing environment

is quite simple.

In this study, one point was not addressed due to

lack of budget. It concerns the validation of the Design

Space and more precisely of the NOR region. This is

a crucial point still underdeveloped in the literature that

also deals with the design of experiments. What are the

experimental points of the Design space for which new

tests must be carried out to validate the delimitation of

the NOR region? This question is all the more important

when you consider that any point in this quality subspace

is supposed to lead to equivalent drugs in terms of

efficacy and safety. This operational flexibility must

above all not lead to risks for the patient due to an error

in the identification of the normal operating region.

V. CONCLUSIONS

This article has proposed a complete Bayesian ap-

proach of Quality-by-Design able to handle qualitative

critical quality attributes and to compensate for data

losses by introducing a weakly informative default prior.

Our approach introduces new criteria to select critical

process parameters such as the Bayes Factor but also to

assess relevance of the model to fit the observed data

such as the posterior predictive check and the leave-

one-out cross correlation. The complete method and its

2https://tbmed.eu/

3https://www.expert-project.eu/
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associated tools are described and their applicability is

assessed through its application to the development of

nanostructured lipid carriers dedicated to nucleic acid

delivery. The two examined critical quality attributes:

stability and siRNA transfection efficacy were described

by two logistic models. The coefficients of both models

were estimated by a Bayesian method implemented in

the R computation environment. The proposed method

also accounts for constraints on impossible values for the

transfection response, which also contributes to improve

the estimation accuracy. Among the four tested critical

material attributes, only three have shown significant

effects on the two CQAs: PEG and Lecithin proportions,

and the LNP size, while the percentage of DOTAP did

not produce any significant effect. Computed design

spaces for the two CQAs demonstrated the existence

of normal operating regions in which the probability to

comply with the expected performance specifications is

greater than 90%. Another advantage of the Bayesian

paradigm is to handle the issue of multiple CQA spec-

ifications in a more natural way. A global design space

was computed and enabled us to identify a compromise

region of interest of ideal proportions.

APPENDIX A

MATERIAL CHARACTERIZATION

A. Materials

Suppocire NBTM was purchased from Gattefosse

(Saint-Priest, France). Myrj 52TM, polyethylene glycol

40 stearate and Super Refined Soybean Oil were from

CrodaUniqema (Chocques, France). Lipophilic cyanines,

DiI and DiD, were purchased from Life technologies.

Lipoid S75-3 (soybean lecithin) was from Lipoid (Ger-

many). DOTAP was purchased from Avanti Polar Lipids

(Alabaster, AL, USA). To perform gel retardation as-

says, GelRed was acquired from Interchim (Montluçon,

France). For transfection assays, the commercial trans-

fection reagent LipofectamineRNAiMax was from Life

Technologies (Carlsbad, CA, USA) and other products

were purchased from Qiagen (Hilden, Germany). Ma-

trigel and cell recovery solution for 3D culture were

provided by BD Biosciences (San Jose, CA, USA).

B. Cell culture conditions

Prostate carcinoma cells (PC3 cells) were obtained

from ATCC (Ref. CRL-1435) and were routinely cul-

tured in RPMI Glutamax culture media (Invitrogen, Ref.

61870-010) supplemented with 10% foetal calf serum

(PAA, Ref. A15-101) and 1% penicillin/streptomycin

(Invitrogen, Ref. 15140-122). Stable PC3 cell lines

overexpressing green fluorescent protein (GFP) were

also produced via transfection with pEGFPC1 plasmid

(Clontech, CA, USA) using Lipofectamine®, according

to provider recommendations.

HUVEC cells (primary human umbilical vein endothe-

lial cell, ATCC® PCS-100-010™) were cultivated on fi-

bronectin coated-6-well plates with EndoGRO complete

medium provided by Millipore. Jurkat cells (immortal-

ized line of human T lymphocyte cells (ATCC® TIB-

152™) were cultivated with RPMI completed with 10%

FBS. PC12 cells (cell line derived from a pheochromo-

cytoma of the rat adrenal medulla, ATCC® CRL-1721™)

were cultured on collagen IV coated wells with RPMI

complemented with 10% heat inactivated horse serum,

5% FBS and 1% PS. PC12 cells were differentiated

into a neuronal phenotype following 5 days incubation

with 50 ng/mL mouse recombinant 2.5S NGF (nerve

growth factor) in RPMI medium completed with 1% heat

inactivated horse serum.

Three-dimensional culture was adapted from a proto-

col previously described by Dolega et al. [55]. Briefly,

the 3D culture was grown in Matrigel (BD Biosciences,

San Jose, CA) according to the top-coat protocol. Ma-
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trigel was thawed overnight and poured into 4-well

Labtec (160 µL of Matrigel, 500 µL of culture media)

plates on ice. For polymerization, Matrigel was incu-

bated for 30 min at 37◦C. Cells were seeded in half the

final volume and allowed to adhere for approximately

45 min (among 7.104 cells/well). The top coat layer

containing 8% Matrigel was slowly poured over attached

cells. The culture medium was changed every other day.

Cells were cultured in a humidified atmosphere with

5% CO2 at 37◦C. After 4-7 days, PC3-GFP cells were

structured as spheroid forms and transfection assays were

performed.

APPENDIX B

PHYSICO-CHEMICAL CHARACTERIZATION OF CNLC

This study case was focused on a subclass of solid

lipid nanoparticles, cationic nanosized lipid carriers

(cNLCs), into two states: as one entity or with modified

siRNA as a nucleic acid delivery system. These nanopar-

ticles present a high colloidal stability and excellent

safety profile.

A. Formulation of cNLCs and siRNA nanocomplexes

siGFP-22 (Qiagen) is used to down-regulate GFP ex-

pression. Cationic nanostructured lipid carriers (cNLCs)

were obtained by emulsion templating through ultra-

sonication according to a process previously described

by Delmas et al.[39]. Both aqueous and lipid phases

contained a blend of solid (Suppocire NCTM) and liquid

(Super refined Soybean oil) glycerides with phospho-

lipids (Lipoid S75-3TM) and DOTAP, while the aqueous

phase was composed of PEG surfactant (Myrj 52TM)

dissolved in 154 mM NaCl aqueous buffer. After ho-

mogenization at high temperature, both phases were

crudely mixed. Sonication cycles were then performed

during a 10mn period (VCX750 Ultrasonic processor,

3mm probe, Sonics, France; sonication power 23%).

Non-encapsulated components were separated from the

nanoparticle dispersion by gentle dialysis overnight

in 154 mM NaCl against 1,000 times their volume

(MWCO: 12,000 Da, ZelluTrans) with the dialysate

changed twice during purification. Nanoparticle disper-

sions were filtered through 0.22 µm cellulosic membrane

(Millipore) before use.

cNLC-siRNA nanocomplexes were constituted

through electrostatic interactions within a variety

of particle amine to siRNA phosphate ratios (N/P)

settled according to the experimental assembly. In

order do to so, the desired amount of siRNA, fixed

at 20 µM siRNA (Qiagen), was incubated at room

temperature with its corresponding amount of cNLC

for 20 minutes to allow for spontaneous nanocomplex

formation. The newly-formed nanocomplexes were

then diluted in the buffer according to the desired

final siRNA concentration. Lipofectamine-siRNA

nanocomplexes were produced in a similar manner

after considering different concentrations with the

specific lipofectamine:siRNA ratio recommended by the

manufacturer’s instructions.

B. Size and zeta potential of both cNLC and siRNA

nanocomplex

The hydrodynamic diameter and zeta potential of the

cNLCs and cNLC-siRNA nanocomplexes were mea-

sured with a Zeta SizerNano (Malvern Instrument,

NanoZS, UK) in 0.15mM NaCl using Zeta Sizer Nano

cells (Malvern Instrument). The samples were equili-

brated before measurement at 25◦C for 2 minutes. cNLC

measurements were made immediately after formulation.

Average hydrodynamic diameter and polydispersity were

extracted from cumulative analysis of the autocorrelation

function on an intensity basis. Each measurement was

performed in triplicate.
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The hydrodynamic diameters were: 42.71 +/- 2.09

nm and 72.94 +/- 0.53 nm for cNLCa and cNLCb,

respectively, and their polydispersity index were both

lower than 0.2, indicating a monodisperse population.

Moreover, a high cationic charge, greater than 20mV,

was observed for both particles in 0.15mM NaCl buffer.

As a matter of fact, a global positive charge is required in

order to promote electrostatic bonds with anionic nucleic

acid (RNA) and thus was achieved via the use of high

DOTAP molar concentration in the cNLCa and cNLCb

composition. Furthermore, both cNLCs displayed a high

level of stability for up to 23 weeks in term of hydrody-

namic diameter and zeta potential. Finally, with variation

in their N/P ratio, cNLC-siRNA nanocomplexes formed

compact structures ranging from 45-65 nm in size at

all N/P ratios as well as low levels of polydispersity.

All nanocomplexes exhibited a cationic surface charge

displaying increase in their zeta potentials with the

corresponding N/P ratio.

APPENDIX C

CNLC-SIRNA MEDIATED GFP INHIBITION IN 2D

CULTURE

PC3-GFP cells were seeded in 12-well plates 24 hours

prior to experiments at a density of 2.5 ∗ 104cells per

well in growth medium. Prior to adding the cNLC-

siRNA complexes, the cells were washed and briefly

incubated with 300 µL/well of DMEM, 6.8% FBS at

37◦C and 5% CO2. Subsequently, 200 µL of cNLC-

siRNA nanocomplexes, typically containing 0.13 µg (20

nM) siRNA, were added to each well and cells were

grown for a further 72 hours. The nanocomplexes’ func-

tional inhibition was compared to two different condition

controls : first of all a transfection with nanoparticle

complexed to scrambled siRNA (siAllstar, Qiagen), with

no known target, and then with non-transfected cells.

Following transfection, cells were analyzed by flow

cytometry (FACS LSRII, Becton Dickinson, France).

Finally, a comparison with a variety of commercially

available transfection reagents was performed following

the same protocol and in accordance with manufacturer’s

instructions.

GFP expression inhibition was also assessed at a

protein level through the use of Western-Blot analysis.

In order to do so, Transfected PC3-GFP cells were

washed twice then added to RIPA lysis buffer containing

complete protease inhibitor cocktail (Roche) and incu-

bated for 10 min at 4◦C. The lysates were centrifuged

at 14000G for 10 min at 4◦C and protein concentra-

tion was assessed using a BCA assay (Pierce). A 10

µg protein sample was resuspended in the appropriate

volume of 10% SDS-containing Laemmli buffer and

reducing agent (DTT) and then boiled for 5 min at

100◦C. The samples were subsequently analyzed on a

4-12% gradient SDS-polyacrylamide gel electrophoresis

(nuPAGE, Invitrogen). The proteins were then trans-

ferred onto a nitrocellulose membrane (Amersham, UK),

blocked with nonfat dry milk in TBS 0.05% Tween 20

buffer and labeled mouse anti-GFP and anti α-tubulin

antibodies, respectively, (Abcam, Cambridge, UK) at

1:5000 dilution overnight at 4◦C. Anti-mouse IgG (Jack-

son Immunoresearch, PA, USA) was used at 1:5000

dilution to detect the GFP and α-tubulin following 1 hour

incubation. Quantification of the data was performed

using ImageJ software (n=3). The relative intensity was

calculated by dividing the absolute intensity of each

sample band by the absolute intensity of the standard

(loading control).

When compared to the commercial agent Lipo-

fectamine, cNLCa and cNLCb charged with 20 nM

siRNA presented comparable down-regulation efficiency

in terms of fluorescence inhibition (N/P =12/1) with

GFP-cells. In the same way, siControl transfection with

Lipofectamine was observed to stimulate GFP expres-
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sion in contrast to transfection with cNLCs. However,

with untreated cells, GFP inhibition was found to have

significantly decreased with Lipofectamine RNAimax

and cNLCa, yet remained unchanged with cNLCs. These

findings were also observed at a protein level. Infact,

according to Western-Blot results, the down-regulation

efficiency after 48hours of transfection of 20 nM siGFP

was less pronounced for cNLCb than cNLCa. The

inhibition caused by cNLCa was actually higher than

siGFP transfection with Lipofectamine RNAimax (seen

as control). Therefore, the comparison with a variety

of commercially available transfection reagents high-

lighted the high efficiency of cNLCa. Finally, the down-

regulation efficiency of both cNLCs exhibited no sig-

nificant changes during longer incubation experiments

at room temperature, demonstrating the high stability of

the nanocomplexes over time.
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